Package org.rubato.math.module

This package provides classes implementing basic mathematical modules and their elements.

See:
          Description

Interface Summary
CFreeElement The interface for elements in the free modules of complex numbers.
CFreeModule The interface for free modules over complex numbers.
FreeElement The interface for elements in a free module.
FreeModule The interface for free modules over rings.
ModularPolynomialFreeElement The interface for elements in a free module of modular polynomials.
ModularPolynomialFreeModule The interface for free modules over modular polynomials.
Module The interface for modules.
ModuleElement The interface for elements in a module.
PolynomialFreeElement The interface for elements in a free module of polynomials.
PolynomialFreeModule The interface for free modules over polynomials.
ProductFreeElement The interface for elements in a free module over a product ring.
ProductFreeModule The interface for free modules over product rings.
QFreeElement The interface for elements in a free module of rationals.
QFreeModule The interface for free modules over rationals.
QStringFreeElement The interface for elements in the free module of QString.
QStringFreeModule The interface for free modules over QString.
RFreeElement The interface for elements in free modules over reals.
RFreeModule The interface for free modules over reals.
RStringFreeElement The interface for elements in a free module over RString.
RStringFreeModule The interface for free modules over RString.
ZFreeElement The interface for elements in a free module of integers.
ZFreeModule The interface for free modules over integers.
ZnFreeElement The interface for elements in a free module of integers mod n.
ZnFreeModule The interface for free modules over integers mod n.
ZnStringFreeElement The interface for elements in a free module over ZnString.
ZnStringFreeModule The interface for free modules over ZnString.
ZStringFreeElement The interface for elements in free modules over ZString.
ZStringFreeModule The interface for free modules over ZString.
 

Class Summary
CElement Elements in the field of complex numbers.
CProperFreeElement Elements in the free modules of complex numbers.
CProperFreeModule The free modules over complex numbers.
CRing The field of complex numbers.
DirectSumElement Elements with components from arbitrary modules.
DirectSumModule Module with arbitrary modules as components.
ModularPolynomialElement Elements in a ring of polynomials.
ModularPolynomialProperFreeElement Elements in a free module of modular polynomials.
ModularPolynomialProperFreeModule Free modules over modular polynomials.
ModularPolynomialRing The ring of polynomials with coefficients in a specified ring modulo another polynomial.
NumberRing Subclasses of this abstract class are the rings of integers, rationals, reals and complex numbers.
PolynomialElement Elements in a ring of polynomials.
PolynomialElementTest  
PolynomialProperFreeElement Elements in a free module of polynomials.
PolynomialProperFreeModule Free modules over polynomials.
PolynomialRing The ring of polynomials with coefficients in a specified ring.
ProductElement Elements in a product ring.
ProductProperFreeElement Elements in the free module over a product ring.
ProductProperFreeModule Free modules over a product ring.
ProductRing Products over rings.
ProperFreeElement The abstract base class for elements in proper free modules.
ProperFreeModule The abstract base class for proper free modules.
QElement Elements in the field of rationals.
QProperFreeElement Elements in a free module of rationals.
QProperFreeModule Free modules over rationals.
QRing The field of rationals.
QStringElement Elements in the ring of strings with rational factors.
QStringProperFreeElement Elements in the free module of QString.
QStringProperFreeModule Free modules over QStringRing.
QStringRing The ring of QString.
RElement Elements in the field of reals.
RestrictedElement Elements in a restricted module.
RestrictedModule Modules with restricted ring of scalars.
Ring The abstract base class for rings.
RingElement The abstract base class for ring elements.
RProperFreeElement Elements in a free module over reals.
RProperFreeModule Free modules over real numbers.
RRing The field of real numbers.
RStringElement Elements in the ring of strings with real factors.
RStringProperFreeElement Elements in a free module over RString.
RStringProperFreeModule Free modules over RStringRing.
RStringRing The ring of RString.
StringElement Elements in a string ring.
StringRing The abstract base class for rings with RingString elements.
ZElement Elements in the ring of integers.
ZnElement Elements in the ring of integers mod n.
ZnProperFreeElement Elements in a free module over integers mod n.
ZnProperFreeModule Free modules over integers mod n.
ZnRing The ring of integers mod n.
ZnStringElement Elements of the ring of strings with integer mod n factors.
ZnStringProperFreeElement Elements in a free modules over ZnString.
ZnStringProperFreeModule Free modules over ZnStringRing.
ZnStringRing The ring of ZnString.
ZProperFreeElement Elements in a free module over integers.
ZProperFreeModule Free modules over integers.
ZRing The ring of integers.
ZStringElement Elements of the ring of strings with integer factors.
ZStringProperFreeElement Elements in a free module of ZString.
ZStringProperFreeModule Free modules over ZStringRing.
ZStringRing The ring of ZString.
 

Exception Summary
DivisionException Exception thrown whenever the solution x of a*x = b, where a and b are ring elements, is requested, but does not exist.
DomainException This exception is thrown whenever a module element operation fails due to a wrong domain.
InverseException Indicates that the inverse of a RingElement does not exist.
 

Package org.rubato.math.module Description

This package provides classes implementing basic mathematical modules and their elements.

Provided are the rings of integers, modular integers, real, complex and rational numbers, rings of strings and polynomials. There are also the free modules over these rings and product rings.